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An important model for describing discontinuous atmospheric flows is obtained by making 
the geostrophic momentum approximation. The solutions vary smoothly along trajectories 
but may be discontinuous in an Eulerian sense. An implicit finite difference method is 
presented for modelling such flows. It is demonstrated that it is able to approximate the 
correct solution in two test problems. 

1. INTRODUCTION 

It is well known that finite difference and related methods will converge to 
smooth solutions of differential equations if they are consistent and stable. If the 
desired solutions are discontinuous, they are not strictly solutions of the differential 
equations as given, but may be solutions of a “weak” form of the equations. Such 
solutions may not be unique unless extra constraints are given, such as the entropy 
condition for shocks in compressible gas dynamics. Finite difference schemes are 
not guaranteed to converge to such solutions unless they are consistent with the 
weak form of the equations and satisfy the extra constraints. 

In meteorology an important type of discontinuous solution is a contact discon- 
tinuity whose geometry is determined by the requirements of balance between the 
horizontal pressure gradient and the Coriolis acceleration resulting from the earth’s 
rotation. Such solutions can be obtained by making the geostrophic momentum 
approximation in the equations of motion. This is one of a number of standard 
approximations used in meteorology, see [ 1 ] for a recent discussion. It was intro- 
duced by Eliassen [2] and Hoskins [3]. Smooth solutions of the resulting equa- 
tions can be obtained analytically in a number of cases by using the geostrophic 
coordinate transformation, Blumen [ 143. This linearises the evolution equations 
and transfers the nonlinearity to the transformation back to real space. Hoskins 
and Bretherton [lo] demonstrated the formation of discontinuities from smooth 
initial data by this method. However, the geostrophic coordinate transformation 
becomes multivalued and hence gives an unphysical solution, after the initial forma- 
tion of a discontinuity. A method of continuing the solution after the formation of 
a discontinuity which makes physical sense was introduced by Cullen and Purser 
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[4]. This continuation respects the Lagrangian form of the original equations, 
which contain no derivatives except those implied by the D/Dt operator. While the 
properties of fluid parcels have to vary smoothly in time, the solutions do not have 
to be continuous in physical space, and parcel positions do not have to vary con- 
tinuously in time. The existence and uniqueness of such solutions was proved in 
[4] for all finite dimensional versions of the problem, subject to an extra stability 
condition. In a wide class of 2-dimensional problems, this method gives exact solu- 
tions for piecewise constant initial data. These solutions play the role of solutions 
of the Riemann problem for l-dimensional hyperbolic conservation laws and can be 
used to provide reference solutions. 

The extension of the existence proof to the infinite dimensional case by taking 
progressively finer approximations to the data follows from the work of Pogorelov 
[8], though rigorous conditions for uniqueness have not yet been established. 
There is considerable observational support for the physical usefulness of such 
solutions [S, 63. 

For practical use of such a model, it is desirable to be able to approximate these 
solutions by conventional Eulerian finite difference schemes because no Lagrangian 
technique is yet available which could deal effectively with the full 3-dimensional 
atmospheric problem. It is not clear whether an Eulerian method can approximate 
such solutions, because the Eulerian form of the equations will not have classical 
solutions once discontinuities have developed. It has not yet been established 
whether the Lagrangian solution of Cullen and Purser corresponds to a weak form 
of the Eulerian equations, or to the inviscid limit of the Eulerian equations with 
viscosity added. In this paper we attempt to answer this question empirically, by 
attempting to solve 2-dimensional problems where the Lagrangian solution is exact 
with standard finite difference techniques. The Lagrangian solutions are calculated 
by an algorithm developed by Chynoweth [7], from the existence proof in [4]. It 
was shown by Cullen [ 151 that it gives the same solution as would be obtained by 
the geostrophic coordinate transformation in cases where both can be used. 

2. MATHEMATICAL MODEL 

This section summarises the equations and the construction of Lagrangian solu- 
tions to the extent needed to choose appropriate finite difference approximations. 
The meteorological justification is given in [46], and the proofs are set out in full 
in [4, 81. 

The equations are written in a terrain-following vertical coordinate Q which is 
pressure p divided by surface pressure p*. They are written in terms of the 
geostrophic wind defined by 

fug= -$-RT$ ln(p,), fu, = $ + RT i ln(p,), 
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where 4 is the geopotential whose horizontal derivative is the pressure gradient 
force, and f is the Coriolis parameter. ug and ug are the Cartesian components of 
the geostrophic wind. R is the gas constant and T the temperature. The atmosphere 
is assumed to be hydrostatic, so that 

-RT i?q5 -- 
fJ XT' (2.2) 

The evolution equations are given by replacing the momentum in the equation of 
motion by its geostrophic value, while leaving the trajectory unapproximated: 

(2.6) 

8 is the potential temperature, given by 19 = T(p,/p)", where pO is a reference 
pressure, K = R/C, and CP is the specific heat of air at constant pressure. V is the 
specific volume of the fluid. The equations are to be solved in a region Q with 
boundary XX!, subject to the boundary condition 

u-n=0 on aa. (2.7) 

It is also possible to use periodic boundary conditions. For different applications, 
source terms can be specified on the right-hand side of (2.3) to (2.6) and nonzero 
velocities and fluxes of ug, og, and 8 specified on XL 

This set of equations determines the actual velocity (u, a, w) implicitly and, hence, 
the trajectory. The direct proof [4] that this can be done requires two further sim- 
plifications. The problem has to be solved between two fixed values of pressure, so 
that the boundary condition at the earth’s surface is applied at a typical value of 
surface pressure. This device allows the equations for air motion to be written in the 
same form as those for an incompressible fluid. A form of Boussinesq approxima- 
tion is then made [2] which allows (2.2) to be written as 

go w -=- 
e. aZ (2.8) 
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and (2.6) to be written as 
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“+!!!+K-0, 
ax ay aZ (2.9) 

where z = z(a) is the new vertical coordinate and B0 is a reference value of 8. The 
Coriolis parameter f has to be treated as constant, though it is in reality a slowly 
varying function of position. It appears likely that the proof can be extended to 
remove the need for these simplifications. 

The proof rests on rewriting (2.3) and (2.4) as 

D(fY - %) _ 
Dt 4, 

D(v,+fi)=f 
Dt 

24 g’ 

(2.10) 

For convenience write (M, N) = (vg + fx, fy - ug). Then the equations (2.5), (2.10), 
and (2.11) are Lagrangian evolution equations for M, N, and 8. The constraints 
(2.1) and (2.8) can be written as 

(fM,fK mM=vp, (2.12) 

where P = 4 + $ f *(x2 + y*). 
The proof is made by approximating the data by piecewise constants and solving 

exactly. The solutions are then proved to converge to a solution for general data, 
as the piecewise constant approximation is relined. The approach is similar to that 
used by Glimm [16] to prove the existence of solutions to l-dimensional hyper- 
bolic conservation laws by approximating the data by piecewise constants and solv- 
ing a sequence of Riemann problems. In our problem, much stronger results can be 
obtained because of the convenient nature of the equations. The finite dimensional 
construction was established in [4]. This is based on the same geometrical ideas as 
are used to construct generalised solutions to the Monge-Ampere equation. The 
theory of the latter equation can then be used to prove convergence to a solution 
for general data; see Pogorelov [8]. In order to provide as rigorous a test of the 
finite difference method as possible, we choose test problems where the solution can 
be calculated exactly for all time using piecewise constant data. Since the finite dif- 
ference method will treat the initial data as smooth, it is necessary to use as high 
a resolution as possible in defining the data for the finite dimensional construction; 
otherwise there could be significant differences in the solutions resulting purely from 
initial data. 

The solutions are constructed as follows: 

(i) Divide the fluid in Q into finite parcels with volumes Vi. 
(ii) Represent the data M, N, and 0 as constant on each parcel at an initial 

time t. 
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(iii) Arrange the parcels within G to satisfy (2.1) and (2.2) by constructing a 
convex polyhedral approximation to the hypersurface P(x, y, z), with the volumes 
of the faces being Vi and with VP= (Mi, Ni, ei) on the ith face. The existence and 
uniqueness of this construction is proved in [4]. The requirement that P be convex 
is the extra information that has to be specified to get a unique solution. 

(iv) Solve (2.10) and (2.11) for new values of Mi and Ni at a time t+dt. In 
the test problems used in this paper these equations can be solved analytically. In 
general, the right-hand sides of these equations will be discontinuous linear 
functions of (x, y, z) and must be mapped into piecewise constants. This mapping 
restricts the overall approximation to first-order accuracy. 

(v) Repeat step (iii) and continue for as long as desired. 

The procedure can be extended to cases where additional terms independent of 
u are present on the right-hand sides of (2.5), (2.6) (2.10), and (2.11). If the right- 
hand sides depend on u, it may still be possible to obtain solutions by iteration. In 
particular, the assumption that f is constant can be relaxed. The velocity field u 
never appears explicitly but can be deduced from the movement of fluid parcels. 

This procedure can be used in principle to construct solutions of Eqs. [4], and 
an implementation is described by Chynoweth [7]. However, it is very expensive 
computationally and the first-order accuracy is not adequate except for cases where 
the approximaton in step (iv) can be avoided by solving the evolution equation 
analytically. The solutions may be discontinuous in physical space and it is also 
possible for parcel positions to change discontinuously in time. In the latter case the 
velocity field u cannot be defined. 

When solving the equations by finite difference methods it is necessary to ensure 
convergence to the limit solution described above even when it is singular. It is not 
yet possible to prove such convergence, and in particular it is not known what if 
any finite difference formulae are consistent with the equations if the solutions are 
discontinuous. Certain principles can be stated, however. 

(i) The trajectory has to be diagnosed from the system of equations; an 
implicit finite difference method must be used to do this. 

(ii) The consistency conditions (2.1) and (2.2) must be satisfied by volume 
preserving rearrangements of 8, M, and N. Ideally no new values of these quantities 
should be created by the finite difference scheme and the volume of fluid with values 
of M, N, and 8 within a given range should be conserved. This rearrangement 
condition is the same as should be applied to the vorticity when solving the 
equations for 2-dimensional incompressible flow. It favours the use of quadratically 
conserving centered differences of the type introduced by Arakawa [9] to mimic 
that constraint. If iterative methods are used to obtain solutions satisfying (2.1) and 
(2.2), each iteration must also consist of a rearrangement. 

The boundary conditions state that it is known which fluid parcels lie in B at any 
time. However, no parcel positions are known. Fluid initially in contact with the 
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boundary can separate from it. Though the normal velocity is zero at the boundary 
it can be discontinuous and nonzero flow can occur arbitrarily close to the bound- 
ary. These conditions are difficult to treat correctly in a finite difference calculation. 

In this paper we solve 2-dimensional test problems derived from Eqs. (2.1) to 
(2.7). The first test problem was introduced by Hoskins and Bretherton [lo] as a 
model for the formulation of fronts in the atmosphere. The fronts are formed by the 
action of a deformation field u = (-LXX, cly, 0) on a basic horizontal temperature 
gradient. The equations for the evolution of the cross section along y = 0 can be 
written 

ad a fug=-+RT-ln(p,) 
ax ax 

De 
-0 

Dt- 

DV 
-= 
Dt 

-c?v 

u= TMX at x= *CCC 

r.i=o at fr =O, 1 

cp=o at (T= 1. 

d is the vertical motion relative to the coordinate (T. 
For Eulerian calculations write 

and write (2.17) as 

ap, a 
at+ax(P*4+;tP*“)= -v*, 

where p* is the surface pressure. 
Since equation (2.13) can be written in terms of M= ug + fx as 

DM -= 
Dt 

-aM 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

(2.23) 
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which can be solved analytically, the solution can be determined exactly for all time 
for piecewise constant initial data. 

The second problem is one of flow over a 2-dimensional mountain ridge. The 
equations are similar to (2.13) to (2.20) except that (2.15), (2.17), (2.18), and (2.20) 
become 

; (ug +fx) =fU. 

DV -= 0 
Dt 

(2.24) 

(2.25) 

l4=U at x= fL (2.26) 

f9 = %(a), M = Ma(a) at x= -L (2.27) 

4 =4*(x) at (r= 1. (2.28) 

This problem can also be solved exactly for piecewise constant initial data if the 
boundary conditions (2.26~(2.28) are replaced by moving the mountain at speed 
-U through a fixed domain and not allowing any flow through the boundaries. 
The right-hand side of (2.24) then has to be set to zero 

3. FINITE DIFFERENCE ALGORITHMS 

The main purpose here is to find a stable and robust algorithm which is able to 
approximate these discontinuous solutions. A standard second-order accurate cen- 
tered scheme is used, modified as necessary to allow it to treat these cases. Further 
work is needed to see if upwind or higher order accurate methods would be 
applicable. It would be natural, for instance, to use compact differences, Beam and 
Warming [ll]. 

The basic method is to use a predictor-corrector algorithm in which the fields are 
first updated using the velocity field from the previous timestep, and a correction 
to the velocity field is then diagnosed to ensure that p.+, ug, and 8 satisfy the 
diagnostic relations at the new time-level. The structure of the solution is thus 
similar to a Navier-Stokes solver, where the pressure has to be corrected so that 
the velocity field is non-divergent at the new time-level. In order to treat non- 
smooth solutions it is found necessary to underrelax the corrections. In the moun- 
tain problem, fluid can “jump” discontinuously across the ridge. This cannot be 
represented by advection by a velocity field and must be treated by explicit adjust- 
ment of the ug and 0 fields. Physically, the rapid transient motion in such regions 
cannot be described under the geostrophic momentum approximation. 

Several of the considerations that arise in the choice of finite difference 
approximation also arise in Navier-Stokes solvers. The equation to be solved for 
the velocity correction takes the form of an elliptic equation for a stream-function. 
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The discretisation is chosen to give a 5-point stencil for this elliptic equation, to 
avoid checkerboard instabilities. The finite difference approximations used in the 
predictor step have to be chosen to be consistent with those in the corrector step 
to ensure rapid convergence. 

Though no artificial viscosity is required on physical grounds, some steps have 
to be taken to control numerical errors. In particular, it is found necessary to 
smooth the velocity field calculated at one time-step before using it as a first guess 
for the next time-step. 

The standard difference notation 

~,A=~x-‘(A,+1,2-A,-,,*) (3.1) 

A” = +(A x+1,2+~x-1,2) 

is used. The finite difference approximations to (2.13), (2.14), and (2.22) are 

aP* at+ 6,(P*U) + ~o(P*~) = -aP* (3.4) 

The sufhces * refer to values at the earth’s surface, o = 1. In order to use these 
convenient approximations, the variables must be arranged on the grid as shown in 
Fig. 1. If the dimensions of the grid are A4 x N in the x and o directions, Eq. (3.4) 
is applied at (M- 2) x (N- 2) points, u is specified at 2N boundary points and w 
at 2M boundary points. The vertical average of (3.4) gives, using (2.19), 

aP* ,,+&(P*l)= -UP*, 

where ii is the vertical mean of U. Subtracting (3.5) from (3.4) gives 

~,(P*(U - Cl) + ~,(P*~) = 0. (3.6) 

This implies that there is a stream function II/ defined at (M- 2) x (N - 2) interior 
points and specified as zero at 2M + 2N - 4 boundary points, where 

dxti=P*ti 

sol)= -p*(u-ii). 
(3.7) 

Condition (3.3) is applied at (M- 1) x (N - 2) points. The evolution equation 
(3.5) is solved at (M- 1) points. 
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FIG. 1. Arrangement of variables on grid in (x, z) plane. 

The finite difference approximations to the evolution equations (2.15) and (2.16) 
are 

au, at+“(d’x”p+f)+X6,gu= -a(ug+fx) (3.8) 

(3.9) 

The approximations to the advection terms used in these equations are chosen to 
be consistent with the finite difference scheme for generating the velocity correction 
described later. 

The procedure for advancing from time t to t + At is a predictor-corrector 
method suggested by that of Meek and Norbury [12]. A standard Crank- 
Nicholson scheme is used to step Eqs. (3.5), (3.8), and (3.9) forward, using values 
of tj and hence (p,u) and (~~6) at time t. The new values of ug, 8, and p* will not 
satisfy (3.2) and (3.3). The values of + are then corrected so that (3.2) and (3.3) are 
satisfied and new estimates made of the other quantities at time’t + At. Each of 
these steps gives one or more implicit equations, each for a single dependent 
variable at the new time level. These are solved by a block tridiagonal algorithm as 
in [12] in which full inversions are done in the o direction, and a standard 
tridiagonal elimination is performed on the blocks. This method is efficient for 
the vertical resolutions used here but would need reconsidering at higher vertical 
resolutions. 
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The first (predictor) step can be written: 

(u,)” = (u,)‘+ At(fU- u(d2xug +f) -&&j” (3.10) 

d# = tl’- At(u”~,~x + r&,8)9: (3.11) 

P*” = P: -At h,(p,ti), (3.12) 

where superscript # denotes a provisional value at t + At and 0 denotes the time 
averaging: 

ui = f( 0; + v;+ d’) 
/y=f(fjl+el+dl ) 
us: = U’ 

(P*@= (P*U)’ 

(f§ = #. 

(3.13) 

The obvious method for the corrector step would be a fully coupled solution of 
the finite difference approximations (3.2), (3.3), and (3.10)-(3.12) using Newton’s 
method to linearise the equations for the corrections to vg, 0, p*, U, and cI. This 
method is successful for smooth solutions of the equations solved in this paper but 
fails for discontinuous solutions. The reason for the failure is discussed below. A less 
direct method is therefore used. A stream function correction A+ is calculated from 
the equations: 

8” = e# - dt(d6 6,,e#) (3.14) 

uf = u,” - At(Au(6,,u, +f)“) (3.15) 

P$’ = P: - AO,4p,4) 

6, All/ = A(P,~) 

6, At/Q = -A(p,(u - U)) 

Au=A(p,4/~:, A6 = A(p, 6)/p: 

fug, = &(P* + RT*” &Mp$)) 
fS,o$ = -Ra-‘S,T” + R6,,(T”)# 6,ln(p$). 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

Equations (3.20) and (3.21) are linearisations of the exact conditions (3.2) and (3.3) 
to be applied at t + At. Equations (3.16) to (3.18) are derived from (3.12) and (3.7) 
by perturbing the dependent variables. Equation (3.19) is a linearised estimate of u 
given p*u. Equations (3.14) and (3.15) are obtained by perturbing (3.8) and (3.9) 
and selecting only certain terms. This selection is the key to a stable integration 
scheme. It can be understood by substituting uf, p,“, and t?# into (3.20) and (3.21) 
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to obtain residuals E, and then substituting (3.14k(3.19) into (3.20) and (3.21), 
giving 

-f4&7(4)* (Lvg +f)C 1 

--At RT: (V, A(P,WP,} =E, 

-fAt 4&WL (Lug +f)” > 

-At Ro-lo”x W&W LWP,) 

-R At S,,,mx {6,6, A(p,U)}/p, = E. 

(3.22) 

(3.23) 

Equation (3.23) contains a variable coefficient elliptic operator on A$ and (3.22) 
contains an elliptic operator on A(p,U). There are also coupling terms between the 
equations. The omission of the remaining terms in (3.9) from (3.14) and in (3.8) 
from (3.15) makes Eq. (3.23) more strongly elliptic than if all the terms were 
included. In particular, all the cross-derivative terms 6,6, have been removed. If 
these terms were retained, the equation for Ati would only be elliptic if 

(av,lax+ f) aejaa- (agag) aefax20 (3.24) 

while Eq. (3.23) is elliptic if 

agax+ fao; aola00; (3.25) 

a much weaker condition. The effect is to stabilise the iteration and allow it to 
reach discontinuous solutions of the governing equations. However, more iterations 
are needed to satisfy (3.2) and (3.3) to a given tolerance. It is necessary to ensure 
that the condition (3.25) is satisfied by the data before solving (3.22) and (3.23). If 
necessary, the data must be modified. An appropriate method is described later. 
The finite difference equation (3.23) contains the 5-point approximation to the 
Laplacian operator. If more averaging were used in the finite difference approxima- 
tions to (3.14) and (3.15), which are used to generate (3.23), a g-point Laplacian 
would be obtained. This is well known to be susceptible to checkerboard 
instabilities. It is necessary to use the same approximations in (3.8) and (3.9) as in 
(3.14) and (3.15) to ensure effective removal of the residual E in a small number of 
iterations. 

Equations (3.22) and (3.23) are solved for A$ and Aii by the same block 
tridiagonal algorithm as used in the predictor step, and an estimate of the values 
of 0, ug, and p* at time t + At is then obtained from 

..x 
8 r+d’= 8# - At(Au 6,8 + Ati 6,,Q5 (3.26) 

ug ‘+dr=ugX -At(Au(S,,(v,+f)+~gO)” (3.27) 

p;+“‘=p*” -At{A(p,fi)}, (3.28) 
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where 5 refers to an average of the intermediate value at # and the one at t + At. 
The correction step is then iterated as much as necessary. The final correction 
(3.26)-(3.28) can be combined with the predictor step at time t + At. 

When solving a problem with significant variations in terrain height, the sim- 
plified equations (3.14) to (3.21) are no longer sufficient to give a solution in a 
small number of iterations because finite differences taken along c surfaces include 
vertical as well as horizontal variations. Equations (3.14) and (3.21) can be written 

0°=8#-At{G,(A+) ~a82~O#} (3.29) 

fS,vi = -Ra-‘6, r” 1 p. (3.30) 

If the x derivative of A$ in (3.29) is taken at constant p rather than constant a, it 
is found that a faster and more reliable convergence to the solution of the system 
(3.2)-(3.9) is obtained. The elliptic equation (3.23) now includes the term 
6,(6, A$) 1 p, leading to a 7-point stencil for the Laplacian operator on A$ as 
illustrated in Fig. 2. 

When discontinuous solutions of the type encountered in gas dynamics are being 
captured by a finite difference scheme, it is necessary to include dissipation either 
explicitly or implicitly to give the required entropy increase. In the present model 
of front formation the discontinuity is a contact discontinuity and is not associated 
with any energy dissipation. The numerical difficulties come from the fact that con- 
ditions (3.24) and (3.25) which ensure ellipticity of the equation for the streamfunc- 
tion correction cannot be enforced on the fields at the new time level and because 
the finite difference approximations may not be consistent at the discontinuity. The 
stability difficulties can largely be avoided by the use of (3.23), which usually under- 
estimates the actual correction needed to II/ and is equivalent to the underrelaxation 
commonly used in the pressure correction method for the Navier-Stokes equations. 

FIG. 2. Construction of approximation to Eq. (3.23) over variable terrain height. 
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The question as to whether the resulting solution is correct can only be answered 
at the moment by practical tests such as those given in Section 4. 

In the mountain flow problem, as discussed in [ 133, energy is dissipated when 
fluid jumps discontinuously from the mountain top to a new position on the lee 
side. In this situation the condition (3.25) is likely to be violated with (&,v,+f) 
negative at some grid points. The data then have to be modified to restore 
monotonicity of ug +fx as a function of x while not changing the global mean value 
of v,. It is desirable to do this in a way which is consistent with (3.2) and (3.3). This 
is done by modifying the potential function defined by 

P(x) = so’ (ug +fx’) dx’ (3.31) 

so that it satisfies d2P/dx2 > 0 and then calculating new ug values from the modified 
function. This procedure corresponds to the discontinuous jump of fluid. Care is 
needed in interpreting the values of u and fi when this correction has to be invoked, 
since they no longer represent the total fluid velocity. 

It is natural to use the final values of u and 6 at one timestep as the first guess 
for the values in the next predictor step. In practice, it is found necessary to smooth 
them between timesteps so that the small scale detail calculated at time t is not used 
in the first guess for the next timestep. 

4. RESULTS 

4.1. Front Formation 

The governing equations are (2.13)-(2.23). The domain is compressed laterally 
with the deformation rate a. The initial data used is shown in Fig. 3. It is similar 
to that used in [4] except for the choice of the basic state vertical gradient of 8. 
Fronts tend to form initially at the upper and lower boundaries and penetrate into 
the interior of the fluid. This penetration is clearly seen in the Lagrangian model by 
comparing Figs. 3a and 4a. The solutions using the Lagrangian method described 
in [7] are shown in Fig. 4 after a non-dimensional time t = 0.5 when the domain 
has shrunk by a factor of approximately 0.6. Since 8 is conserved following parcels, 
by (2.16), and A4 changes according to (2.23); the constraints (2.13) and (2.14) 
require the slope of the isentropes to becomes shallower with time. The frontal posi- 
tions at the upper and lower boundaries thus stay almost fixed during the time 
integration, as can be seen in Figs. 3a and 4a. The strength of the front increases, 
as does the geostrophic wind u, near the boundaries. The cross frontal circulation 
shown in Figs. 4c and d shows that the vertical motion reaches its maximum value 
very close to the boundaries. Note that this is the actual vertical motion, not the 
pseudo-vertical motion c? that appears in Eqs. (2.19~(2.22). 



a 

1 I 

b 

t I I I I I \\\I I I I J 

FIG. 3. Initial data for front formation, 2°C temperature difference in vertical: (a) element distribu. 
tion for Lagrangian method; (b) potential temperature (“C); (c) geostrophic wind (ms-I). 
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FIG. 3-Continued. 

The results from the finite difference model, using a uniform 50 x 12 grid to cover 
the whole domain, are shown in Fig. 5. The boundary conditions are moved in with 
time, so that only the solution on the inner 30 x 12 gridpoints is shown in Fig. 5. 

There is good general agreement with the Lagrangian solutions. There is some 
smoothing of the potential temperature gradient at the boundaries. This is partly 
because the staggered grid only holds values of 8 a full grid length in from the 
boundary. A stretched grid near the boundary might give a sharper front. The max- 
imum values of u, are well captured. Figure 5c shows the horizontal cross-front 
wind with the basic deformation removed. The maximum values are reached in 
shallow layers near the upper and lower boundaries and agree to within 0.5 ms - l 
with those from the Lagrangian model. The largest difference is the underestimation 
of the maximum at the lower boundary in the finite difference model. The vertical 
velocity reaches its maximum values closer to the upper than the lower boundary. 
The largest values are within 0.5 cm s - ’ of those predicted by the Lagrangian 
model. In the finite difference model there is an enhanced maximum and an extra 
minimum near the upper boundary, suggestive of a weak computational instability. 
The maximum near the lower boundary is underestimated. 

A second case is illustrated in Fig. 6. The data used have a much stronger tem- 
perature stratification. This means that the fronts do not penetrate so far into the 

581/81/2-7 
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FIG. 4. Solutions at f =OS using Lagrangian model: (a) element distribution; (b) potential tern- 
perature (OK); (c) geostrophic wind (ms-‘); (d) horizontal cross-front velocity (ms-1); (e) vertical 
velocity (ems-‘). 
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IX FIG. 4-Continued. 
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FIG. 4-Continued. 

fluid and the vertical velocity will be smaller. The Lagrangian solution shown in 
Fig. 6a illustrates that no elements actually separate from the boundary. The poten- 
tial temperature fields agree closely and there is little evidence of numerical smooth- 
ing. The vertical velocity fields also agree well, the maximum upward motion is the 
same in both solutions, though its position is slightly displaced between the two. 
The finite difference model produces an extra maximum of downward motion near 
the upper boundary, which appears to be a numerical error. 

It would be desirable to compare the two methods more objectively by calculat- 
ing difference fields. This is only useful if a much higher resolution can be used in 
the Lagrangian method. At presently affordable resolutions, the use of piecewise 
constant data in one method and grid-point approximation in the other makes 
objective comparison difficult. 

In order to test the stability of the numerical method, and its ability to follow an 
inviscid discontinuous solution for a long period, the problem was solved using the 
initial data in Fig. 3 and a deformation rate proportional to cos(&). The maximum 
reduction in cross section was a factor of 0.5, and the equations were integrated 
through five periods. The exact solution will oscillate in time with the strength of 
the discontinuity varying periodically. This behaviour is exactly reproduced by the 
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Lagrangian model. The results after one and live cycles using the finite difference 
model are compared in Fig. 7. The differences are very small, despite the various 
smoothing devices used in the calculations and the difficulty of imposing the correct 
boundary conditions which causes the slight drift in the mean values. 

4.2. Mountain Flow 

The governing equations are (2.13), (2.14), (2.16), (2.19), and (2.24)-(2.28). A 
similar problem was solved using a Lagrangian method by Cullen, Chynoweth, and 
Purser [13]. It was only possible to use a low resolution description of the flow 
because of the difficult computer logic and therefore quantitative details of this 
solution should not be compared with a high resolution finite difference calculation. 

The main features of the solution are illustrated in Figs. 8(a) and 9(a). Fluid is 
flowing at 1 lms - ’ over a barrier 2000 m high and 120 km wide. The elements are 
numbered. As fluid crosses the barrier the element tangent to the top of the barrier 
is split and its area gradually transferred from an upstream to a downstream posi- 
tion. The two parts of such elements are denoted A and B. The .division into 
elements corresponds to contours of constant 8. Elements 410, 11-17, 18-24, 
25-31, and 32-36 represent layers of constant 13. As time proceeds, fluid is blocked 
upstream for a period and then jumps to a new downstream position. The slopes 
of the lines of constant 13 at low levels upstream are reduced. There is a hydrostatic 
pressure difference of 8 Pa across the barrier. Element 28 is brought down to the 
surface behind the barrier, implying the descent of less dense and therefore warmer 
air. There is very little effect on the fluid higher up than the barrier height. There 
is a net displacement of lower level fluid from left to right. Equation (2.24) shows 
that this will be compensated by a reduction in the values of ug. The effect is much 
smaller at upper levels. 

The initial data for the finite difference model is shown in Figs. 8b and c. It is 
chosen so that the 19 and ug distributions are similar to the Lagrangian data and the 
barrier has the same height and cross sectional area. The output uses physical 
height rather than pressure as a vertical coordinate and extends up to 12 km, 
though the model itself extends higher than this. The irregularities in the 0 field 
over the mountain top result from the interpolation. A uniform 80 x 10 grid is used, 
with a horizontal grid length of 31 km. 

The finite difference solution after 12 h is shown in Figs. 9b-e. The 8 field above 
the mountain top has correctly been translated with little change. Cold air is trap- 
ped to the left of the mountain and the change of slope of the upstream isentropes 
is predicted. The cold air crossing the mountain top loses its identity due to numeri- 
cal mixing and there is no downstream cold air corresponding to element 36B. The 
dragging of warmer air down on the lee side is correctly predicted. There are 
numerical errors at the gridpoint directly over the mountain top. The ug field, 
Fig. 9c, shows the advection of the main maximum towards the mountain barrier. 
The results at low levels for the u and w fields, Figs. 9d and e, show the attempt of 
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FIG. 5. Solutions at t=0.5 using finite difference model: (a) potential temperature (“K); 
(b) geostrophic wind (ms-‘); (c)h orizontal cross-front velocity (ms-‘); (d) vertical velocity (ems-‘). 
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FIG. 5-Continued 



FIG. 6. Solutions at f = 0.5 for front formation, 10°C temperature difference in vertical: (a) element 
distribution for Lagrangian method; (b) potential temperature (“C), Lagrangian method; (c) potential 
temperature (“C), finite difference method; (d) vertical velocity (ems-‘), Lagrangian method; (e) vertical 
velocity (cm-‘) finite difference method. 
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FIG. 6-Continued. 



342 M. J . P. CULLEN 

E 

t 

P 

FIG. 6-Continued. 

the finite difference model to model the singular behaviour of the Lagrangian solu- 
tion. At the lowest layer of gridpoints upstream the flow is blocked and vg increases 
according to Eq. (2.24). At the second level the flow is accelerated to bring fluid 
across the barrier and D, decreases. Above the second level there is little effect on 
the 0 field but there are some oscillations in the ug field. Downstream of the barrier 
at low levels there is a “start vortex,” caused by the vertical expansion of the 
column of air directly above the mountain top at the initial time. The upstream 
barrier jet reaches a peak of 9 ms -I compared with 15 ms -r deduced at the left- 
hand boundary of element 36 in the Lagrangian solution. The u field does not 
deviate from its basic value of 11 ms-’ by more than 1 ms-’ except near the 
barrier, where it reaches 50 ms-‘, and at some gridpoints at the top of the model, 
not shown in Fig. 9d. The vertical velocity shown is again the true physical vertical 
motion, not the pseudo-vertical velocity d. There are values up to 6 ems-’ above 
the barrier extending up to the top of the model which are caused by numerical 
errors. Values near the barrier reach 1 ms-‘. 

The pressure difference across the mountain at the surface is 2.5 Pa. This is less 
than that deduced from the Lagrangian model, but the latter value may be 
increased by the simple block used to represent the barrier and the low resolution 
of the rest of the calculation. 
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FIG. 7. Solutions for periodic frontal deformation: (a) potential temperature (“C), 1st cycle, solid 
lines; 5th cycle, dashed lines; maximum compression; (b) potential temperature (“C) 1st cycle, solid 
lines; 5th cycle, dashed lines; maximum expansion. 
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FIG. 8. Solutions for flow over mountain ridge. Initial data: (a) element distribution for Lagrangian 
method; (b) potential temperature (OK); (c) geostrophic wind (ms-‘). 
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X FIG. 8-Continued. 
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FIG. 9. Solutions for flow over mountain ridge after 12 h. (a) Element distribution for Lagrangian 
method; (b) potential temperature (“K), finite difference method; (c) geostrophic wind (ms-I); (d) cross- 
mountain velocity (ms-‘); (e) vertical velocity (ems-I). 
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FIG. %-Continued. 

I-- ” 



DISCONTINUOUS ATMOSPHERIC FLOWS 341 

FIG. 9-Continued. 
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5. SUMMARY 

These results suggest that a carefully designed implicit finite difference algorithm 
can represent discontinuous Lagrangian solutions representing atmospheric fronts 
and can follow a solution in which fronts are formed and dissipated several times. 
It is also possible to approximate a highly singular solution describing flow over a 
mountain barrier. It is not clear in what sense “convergence” is meaningful in this 
case. It would be highly desirable to establish theoretically under what conditions 
the iteration strategy, which had to be developed empirically, does in fact converge 
to the desired solutions. The theoretical tools necessary to do this are some way off. 
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